
Introduction

Greenhouse gas emission reduction has become the 
focus of today’s research. In December 2009 the Chinese 
government proposed targets aimed at controlling 
greenhouse gas emissions. More specifically, it was 
decided that CO2 emissions per unit gross domestic 
product (GDP) in China should be cut by 40-45% in 
2020 compared to 2005. Then China and the United 

States jointly issued the “China-U.S. Joint Presidential 
Statement on Climate Change” in November 2014 
[1], and China claimed to peak CO2 emissions around 
2030 and would endeavor to reach the carbon emission 
peak as soon as possible. Besides, China also made 
climate change action included in the “13th Five-Year” 
Development Planning [2]. Since then, whether or not 
the target can be accomplished has become the focus of 
discussion.

Hebei, as a large economic and energy consumption 
province, is located in the Bohai Sea Economic Zone 
and the Beijing Tianjin Hebei Economic Circle, with 
rich fossil energy and oil field resources [3]. Since the 
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founding of new China, especially since the reform and 
opening up, Hebei has formed a multi-pillar industrial 
structure dominated by steel, coal, the chemical 
industry, and equipment manufacturing, as well as other 
resource-intensive and heavily polluting industries. In 
past years, with the economic growth of Hebei, the waste 
of energy has become more and more serious, which 
has caused many ecological environmental problems, 
such as the haze and smog that has caused great harm 
to society and individual health. Moreover, possessing  
a lot of high energy-consuming industrial enterprises, 
Hebei is facing many issues such as the upgrading 
industrial structure, enterprise transformation, etc. 
Therefore, the “12th Five-Year” Greenhouse Gas 
Emission Control Program in Hebei (2012.09) has 
proposed that, compared with 2010, Hebei’s carbon 
emissions per unit of GDP should be reduced by 18% 
until 2015, and the energy consumption per 10,000 
yuan should be reduced to 1.3 tons of standard coal. 
Indubitably, the control of carbon emissions in Hebei is 
imperative.

Much researchhas focused on CO2 emissions. Wang 
P et al. analyzed the impacts of an emissions trading 
scheme policy on carbon emissions in Guangdong 
Province using a dynamic CGE model [4]. Lu et al. 
and Zhang et al. investigated the carbon emissions of 
industries in China using the complete decomposition 
technique and Malmquist-type index, respectively [5, 6]. 
Monoj et al. reviewed and studied the current methods 
in the field of CO2 capture and separation [7]. Lajunen 
et al. evaluated CO2 emissions of different types of city 
buses [8].

As for the analysis of influencing factors of carbon 
emissions, Xu et al. found that energy efficiency can 
significantly impact CO2 emissions, followed by private 
vehicles and urbanization [9]. Tang et al. found that 
in Vietnam, energy consumption and income would 
promote CO2 emissions, but the square of income had 
the opposite impact [10]. Besides, Özbuğday et al. found 
that the scale of economic activity and industrialization 
would lead to a significant increase in CO2 emissions 
[11]. Karmellos et al. used an LMDI-I method to 
estimate five driving factors of CO2 emissions (level of 
activity, electricity intensity, electricity trade, efficiency 
of electricity generation and fuel mix) from the power 
sector, and results showed that electricity intensity had 
the domain effect [12].

The IPAT and STIRPAT (stochastic impacts by 
regression on population, affluence, and technology) 
models have been mainly used in the study of CO2 
emissions [13]. Specially, Zhaohua Wang et al. used an 
improved STIRPAT model to analyze the influences of 
urbanization level, economic level, industry proportion, 
tertiary industry proportion, energy intensity and R&D 
output on CO2 emissions in Beijing, China [14]. Put 
slightly differently, the STIRPAT model used by Ping 
Wang et al. also examined the factors of population, 
energy consuption structure and foreign trade degree 
[15]. Yanan Wang et al. employed STIRPAT to examine 

the impact of population, per capita consumption, 
energy intensity, urbanization and aging population on 
CO2 emissions by adopting panel data of 30 provinces 
from 1997 to 2012 [16]. Klaus Hubacek et al. assessed 
population, lifestyle, technology and their associated 
CO2 emissions in China [17]. Chuyu Xia et al. made 
a scenario analyses of low-carbon transformation for 
Zhejiang province in China [18]. Besides, the STIRPAT 
model has also been applied in other fields. Chunfu Zhao 
et al. explored the influencing factors of population, 
affluence, urbanization level, and diet structure on 
agriculture products-related water footprint change 
[19]. Muhammad Shahbaz et al. studied the relationship 
between urbanization and energy consumption in the 
case of Pakistan [20], while Lei et al. used the STIRPAT 
model to analyze five types of decomposed energy 
consumption [21].

Artificial neural network (ANN) has been widely 
applied as an intelligent model. Based on ANN, some 
papers have made predictions for wind power [22], wind 
speed [23], district-level electricity demand [24] and the 
water-alternating-CO2 process [25]. Alireza Taheri-Rad 
et al. simulated the energy flows for the production of 
various paddy rice cultivars [26]; Nadya et al. simulated 
the relationship between spectral profiles and hardness 
values [27]; Raul et al. modelled the electric arc furnace 
[28]. Besides, Marjan et al. applied ANN in the field of 
chemistry [29], and Morse et al. in the field of composite 
panels [30]. Based on the application of artificial neural 
network optimized by genetic algorithm, Hamzeh 
Soltanali et al. simulated the energy flows of kiwifruit 
production [31]; Rashidi et al. made a thermodynamic 
analysis of the ejector refrigeration cycle [32]; and 
Hamid et al. forecasted the HAZ and temperature 
distribution of the specimens [33].

In this paper, the combination use of STIRPAT 
model and the BP neural network model based on 
genetic algorithm (GA-BP) are applied to predict the 
CO2 emissions peak of Hebei province, and the theories 
and methods used in this paper are of referential 
significance for China and other provinces.

Material and Methods

Theories

Ridge Regression

Ridge regression, also called Tikhonov 
regularization, is a biased estimation regression 
method for linear data analysis which is essentially an 
improved least square estimation method [34]. When 
multicollinearity exists, the ridge regression method 
makes the estimation of the regression coefficient 
slightly biased through adding a non-negative factor K 
to the main diagonal element of the normalized matrix 
of the independent variable, then as a result, the stability 
of the estimator can be improved significantly, and the 
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standard deviation of the regression system is smaller 
than the least squares estimator [35]. This paper uses the 
macro program Ridge Regression to do ridge regression 
in the SPSS software environment.

IPAT Model and STIRPAT Model

The IPAT model is also called Kaya identity, which 
can be obtained by decomposing the equation: 

                (1)

…where C represents carbon emissions, P is population, 
G denotes GDP, E denotes energy consumption; G/P 
represents per capita GDP, E/G denotes energy intensity, 
and C/E denotes carbon emissions per unit of energy.

Dietz et al. (1994) established a stochastic model of 
STIRPAT to ameliorate the IPAT model:  

                      (2)

…where I, P, A and T represent environmental 
stress, population size, affluence and technical level 
respectively; a is the model coefficient; b, c and d 
represent the elasticity coefficient of population scale, 
affluence degree and technical level respectively; and e 
is the model error term. 

Compared with the IPAT model, the STIRPAT 
model has better expansibility. When assessing the 
environmental impact, multiple independent variables 
can be introduced to test the influence of each 
independent variable on environmental pressure.

Take the natural logarithm for formula (2) on both 
sides: 

    (3)

The standard regression coefficients of equation  
(3) reflect the extent and direction of the influence  
of the explanatory variables on the explanatory 
variables. 

Based on the STIRPAT model, Huanan Li et al. 
[36] divided China’s 30 provinces into five regions, 
and analyzed the carbon emissions of provinces from 
1990 to 2010. The results show that population, GDP, 
technology, urbanization rate and industrial structure 
are the main factors affecting carbon emission. In this 
paper, we use the proportion of coal consumption to 
replace the carbon emissions per unit of energy (C/E) 
in formula (1), because the carbon emission per unit of 
energy is essentially the carbon emission coefficient, 
of which the value is basically fixed, and there will be 
errors in the ridge regression model when the variable 
is a constant. Considering that the carbon emission is 
mainly caused by coal consumption, the proportion 
of coal consumption is introduced as a variable. In 
addition, the urbanization rate and the proportion of 

service industry are added into the formula (3), thus  
a new STIRPAT model is obtained:

 (4)

…where EM represents CO2 emissions (10,000 tons), P 
is population (10,000 people), AvGDP is GDP per capita 
(yuan/person), ENE is the energy intensity (tons of 
standard coal/10,000 yuan), PC is the proportion of coal 
consumption, CITY is the urbanization rate, SERV is the 
proportion of service industry, and g is a constant term 
[37-39].

Genetic Algorithm

Genetic algorithms (GA) is a new important branch 
of artificial intelligence, which is developed on the 
basis of Darwin’s theory of evolution, and simulates 
the mechanism of biological evolution on the computer. 
It searches, calculates and solves problems according 
to the natural evolutionary rules such as survival of 
the fittest and so on. Moreover, it is an algorithm with 
strong global search ability and global optimization 
performance, which mainly includes operations of 
selection, crossover and mutation. Besides, it is robust, 
simple and versatile, which can be used in parallel 
distributed processing networks. Therefore, the genetic 
algorithm is used to narrow the search scope of BP 
neural networks in the training process by optimizing 
the weights and thresholds [40, 41].

BP Neural Network

Back propagation (BP) neural network is a three-
layer or more network with no feedback and no 
interconnection, which consists of two processes: 
forward propagation of information and reverse 
propagation of error. In forward propagation, the input 
signal is input from the input layer, and then transmitted 
to the output layer after layer-by-layer processing of 
the hidden layer. If the actual output of the output 
layer does not match the expected value, the error back 
propagation process would be transferred. And the 
process of reverse propagation can reduce error through 
modifying the connection weight from the output layer 
to the input layer. The above two processes are cyclic. In 
general, the training process of BP neural network is the 
process of continuously adjusting connection weights, 
until the mean square error of the output is up to the 
required standard [40, 42].

Optimization of BP Neural Network 
by Genetic Algorithm

The algorithm flow of BP neural network based 
on genetic algorithm (GA-BP) is shown in Fig. 1. 
The calculation software is MATLAB R2015b in the 
operating environment of Windows 10.
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Data

Data of STIRPAT Model

The data of population, GDP, energy consumption, 
proportion of coal consumption, urbanization rate and 
the proportion of service industry in Hebei province 
from 1990 to 2015 are all from the Economic Yearbook 
of Hebei Province. The value of GDP is calculated at 
constant price in 2000. Carbon emissions are calculated 
by the following form:

                  (5)

…where EM represents carbon emissions, j represents 
years, E represents energy, i represent four kinds of 
energy consumption (coal, oil, natural gas and primary 
power), and σ represents carbon emission coefficient.

Data of GA-BP Model

The data used in the GA-BP method are consistent 
with the STIRPAT model except for GDP per capita, 

which is replaced by GDP, namely population, GDP, 
energy intensity, coal consumption proportion, 
urbanization ratio, the proportion of service industry. 
The data used in the model during 1990-2015 can 
reference Table 4 (GDP can be calculated by “population 
× per capita GDP”).

CO2 Emission Coefficients of Coal, Oil 
and Natural Gas

This paper collects two kinds of CO2 emission 
coefficients of coal, oil and natural gas. The first kind 
is obtained by calculation (Table 1, CO2 emission 
coefficient I). The second is derived from Liang 
Wei’s article [43] (Table 1, CO2 emission coefficient 
II). By comparison, the gap between the two kinds 
of coefficients is very small, and the second kind of 
coefficient is used in this paper.

 
Carbon Emission Coefficient 

of Electrical Power

“The 2010 China Low-Carbon Technology Fossil 
Fuel Grid Connected Power Generation Project 

Fig. 1. Algorithm flow.
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Benchmark Emission Factor,” published by the National 
Development and Reform Commission (NDRC), 
provides power emission factors applicable to various 
types of installed projects in 2008 (Table 2). As the data 
are all around 0.8, the value of 0.8 is used as the power 
emission factor in this paper. Then according to “energy 
supply standard coal reference coefficient” (electric 
power is 0.1229 kgce/ kWh) provided by China Energy 
Statistics Yearbook, the CO2 emissions coefficient of 
electric power is calculated to be 0.0065 tCO2/tce.

Model Construction

STIRPAT Model

Based on the data of Hebei Province from 1990 to 
2015, we carry out a ridge regression analysis, and the 
standardized coefficients of each variable with K value 
are shown in Table 3, then Fig. 2 depicts the ridge trace.

When K is 0.4, the coefficients of each variable 
tend to be stable, and the coefficient of determination 
is 0.9653, which implies high goodness of fit. The 
variance analysis of the fitting results shows that the F 
test of the model is significant (Table 4). In addition, 
the results of nonstandard processing of coefficients 
are also calculated in Table 4. As a result, the equation 
corresponding to the STIRPAT model is obtained:

 
(6)

Table 1. CO2 emission coefficients of coal, oil and natural gas.

Energy
Average low 

calorific value a

kJ/kg(m3)

Standard coal
coefficient a

kgce/kg(m3)

Carbon content per unit 
calorific value b

Tons of carbon /TJ

Carbon oxidation 
rate b

CO2 emission coefficient 
tCO2/tce

I II

Raw coal 20908 0.7143 26.37 0.94 2.6604 2.7689

Raw oil 41816 1.4286 20.10 0.98 2.1141 2.1455

Natural gas 38931 1.3300 15.30 0.99 1.6257 1.6420
a Source: the general rules for calculation of comprehensive energy consumption (GB/T 2589-2008);
b Source: the guidelines for the compilation of the greenhouse gas inventory at provincial level ([2011]1041).

Table 2. Power emission factors for all types of installed projects 
in 2008 (tCO2/MWh).

Regional power grid 600 MWe 660 MWe 1000 MWe

North China region 0.8075 0.8065 0.7838

Northeast region 0.7968 0.7968 0.7944

East China region 0.7845 0.7825 0.7613

Central China region 0.8044 0.7963 0.7963

Northwest Region 0.8325 0.8311 0.8244

Southern Region 0.8054 0.8008 0.8008

Table 3. R-Square and beta coefficients for estimated values of K.

K RSQ P AvGDP ENE PC CITY SERV

0.0000 0.9999 -0.0999 1.4930 0.4499 0.0208 0.0000 -0.0012

0.2500 0.9753 0.2694 0.2758 -0.0669 0.0599 0.3163 0.0253

0.5000 0.9587 0.2417 0.2458 -0.1118 0.0619 0.2754 0.0198

0.7500 0.9415 0.2238 0.2272 -0.1260 0.0604 0.2492 0.0140

1.0000 0.9233 0.2098 0.2128 -0.1304 0.0579 0.2299 0.0094

Fig. 2. Ridge trace.
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Formula (6) shows that the influence of the variables 
on CO2 emissions in the STIRPAT model from large to 
small is the proportion of coal consumption, population, 
urbanization rate, energy intensity, per capita GDP and 
the proportion of services.

a) Coal consumption proportion
The elasticity coefficient of coal consumption 

proportion to CO2 emissions in Hebei from 1990 
to 2015 is 2.7555, of which the influence on CO2 
emissions is the largest among all variables. Energy 
consumption in Hebei increased from 61.24 million 
TCE in 1990 to 193.95 million TCE in 2015, which 
had increased significantly since 2000. And during  
1990-2015, the proportion of coal consumption in  
Hebei’s energy consumption was about 90%. Thus the 
effect of coal consumption proportion on CO2 emission 
is inevitable.

b) Population
The elasticity coefficient of population in Hebei is 

2.7164, indicating that population has a positive effect 
on CO2 emissions. During 1990-2015, the population 
of Hebei increased from 61.59 million to 74.25 million, 
with a growth rate of 20.56%. The growth of population 
made the corresponding growth of energy consumption 
a necessary condition to meet the basic needs of national 
survival and development, thus indirectly leading to the 
continuous rise of CO2 emissions.

c) Urbanization rate
In the model, the influence coefficient of 

urbanization rate is 0.3442, which ranks third among all 
the variables. During 1990-2015, the urbanization rate 
of Hebei increased from 14.37% to 51.33%, showing a 
fast urbanization process. However, the improvement of 
residents’ living standards can promote the growth of 
living energy consumption, coupled with the production 
and consumption of energy mainly being in cities and 
towns. As a result, the process of urbanization leads to 
an increase in CO2 emissions.

d) Energy intensity
The influence coefficient of energy intensity in the 

model is -0.2108, which is the only variable that has 
a negative impact on CO2 emissions, indicating that 

carbon emissions would increase with the decrease of 
energy intensity. The energy intensity of Hebei dropped 
from 4.0524 TCE/10,000 yuan to 1.3121 TCE/10,000 
yuan during 1990-2015, which means that the growth 
rate of GDP in Hebei was greater than that of energy 
consumption. Although energy intensity is decreasing, 
energy consumption and GDP are growing, thus carbon 
emission increases.

e) Per capita GDP
As for per capita GDP, its impact on CO2 emissions 

in Hebei is not as significant as other variables, but 
also plays a positive role in promoting CO2 emissions. 
Over the past two decades, Hebei’s economy developed 
rapidly, and its per capita GDP increased from 2,454 
yuan to 30,174 yuan during 1990-2015 – an increase 
by more than 11 times. Rapid growth of the economy 
plays a great role in promoting energy demand and CO2 
emissions. Nevertheless, as the economy and wealth 
grow, more capital will be spent on R&D as well as the 
introduction of low-carbon technologies, which leads 
to the improvement of efficiency of energy utilization, 
thus energy consumption and carbon emissions per unit 
output are depressed.

f) Proportion of service industry
The proportion of service industry has the least 

impact on CO2 emissions in Hebei, which is only 
0.0788. China’s economy was not yet developed in the 
1990s, when the proportion of the service industry 
was relatively large. And then with the development  
of industry, the proportion of the service industry 
declined. In recent years, China’s industry has developed 
very well, and faced adjustment and reformation  
on the industrial structure. According to the 13th 
Five-Year Plan, by 2020 the added value of service 
industry in Hebei should account for about 45% 
of GDP. From another point of view, the small  
proportion of service industry reflects that the impact 
of industrial structure on carbon emissions is mainly 
concentrated on other industries. Since the proportion of 
the service industry will continue to rise in the coming 
years, it is of some significance to study the service 
industry.

Table 4. Non-standardized coefficient.

B SE(B) Beta.std B/SE(B) t F value Sig F

P 2.7164 0.1612 0.2508 16.8534 0.0000

AvGDP 0.1895 0.0099 0.2555 19.2393 0.0000

ENE -0.2108 0.0596 -0.1000 -3.5354 0.0028

PC 2.7555 1.4803 0.0618 1.8614 0.0812

CITY 0.34412 0.0295 0.2892 11.6686 0.0000

SERV 0.0788 0.1183 0.0223 0.6665 0.5146

Constant -27.0427 6.4554 0.0000 -4.1891 0.0007

74.2791 0.0000
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GA-BP Model

The differences in magnitude of the vectors in the 
raw data sample are large, which is not conducive to 
the training and calculation of the network, therefore it 
is necessary to normalize the raw data samples. In this 
paper, the “mapminmax” function is used to normalize 
the input and output data, so that the processed data are 
evenly distributed in the range of [-1, 1], and the syntax 
format is “[y1, PS] = mapminmax(x1)”. When another 
set of data needs to do the same normalization process, 
the syntax format is “y2 = mapminmax (‘apply’, x2, 
PS)”. The corresponding transformation formula is as 
follows:  

                   (7)

…where X represents the original sample data, 
andrepresents the normalized sample data. After the 
BP neural network training is finished, the function 
“mapminmax” is used to reverse normalization,  
and the syntax format is “x1́ = mapminmax (‘reverse’, 
y1, PS)”.

a) Initialization parameter setting
In this paper, the training method of BP neural 

network is a descent method with momentum gradient, 
the training function is “traingdm,” and the performance 
function is “MSE.” Besides, the learning rate is set 
to 0.1, maximum training time is set to 1000, and the 
target error of training is 0.0001; other parameters are 
default values.

b) The number of hidden layer nodes
The BP neural network used in this paper is a three-

layer structure neural network. According to the general 
rules of experience, the number of nodes in a single 
hidden layer is determined by the following formula:  

                    (8)

…where a represents the number of nodes in the input 
layer, c represents the number of nodes in the output 
layer, b represents the number of nodes in the hidden 
layer, and m represents an integer in the range of 1 to 10. 
In this paper, the input layer has 6 nodes, and the output 
layer has 1. The number of nodes in the hidden layer is 
set to 9.

c) The setting of transfer function
The transfer function of the hidden layer uses the 

sigmoid tangent function “tansig,” and the transfer 
function of the output layer is the “purelin” function. 

d) Parameter setting of genetic algorithm
In the genetic algorithm, the maximum genetic 

algebra is set to 30, the binary number of variables  
is 10, the generation gap is set to 0.95, and the crossover 
probability is set to 0.7, the mutation probability  
is 0.01.

Model Checking

Using the STIRPAT model and GA-BP model, the 
CO2 emissions of Hebei from 1990 to 2015 are predicted, 
which are compared with the raw data. The results are 
shown in Fig. 3.

In the STIRPAT model, the fluctuation of raw data 
is large, while the prediction data is relatively stable. 
Though there are partial deviations (the maximum error 
is as high as 20%) in the fitting result, most of the errors 
are within 10%, and the prediction errors of the data 
tend to 0 since 2014. Thus the overall stability of the 
STIRPAT model is good.

In the GA-BP model, we use the data of 21 years 
from 1990 to 2010 as the training data, and the data 
from 2011 to 2015 as test data. The error evolution 
diagram of GA optimization process is shown in Fig. 4. 
It can be seen from Fig. 3 that the prediction errors of 
the GA-BP network are basically within ±10%, and most 
of the errors are at the interval of [-4%, 2%]; therefore 
the training result is good.

Fig. 3. Comparison of CO2 emissions between predicted data and 
raw data during 1990-2015.
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Scenarios Setting

Population

It can be seen from formula (6) that population 
has a significant impact on the carbon emissions of 
Hebei. According to the Provincial Health Committee 
and Provincial Family Planning Commission, affected 
by the decline in birth rate and the rise in mortality 
levels, the growth rate of the province’s population will 
decline rapidly during the 13th Five-Year; however, the 
population will still present a growth trend of inertia. 
It is estimated that the population of Hebei will peak 
at 77 million around 2025, and then begin to decrease 
slowly [44]. In 2015, the population of Hebei was  
74.25 million, thus the average annual growth rate of 
Hebei’s population during 2016-2025 would be 0.364% 
with the supposition that the population would peak at 
77 million in 2025 (Scenario B). Besides, this paper 
assumes that scenarios A and C reached the population 
peak of 77 million in 2028 and 2022, respectively. And 
the average annual deceleration rates after the peak 
years are all set to 0.2% in the three scenarios (Table 5).

GDP

The 13th Five-Year Plan of Hebei pointed out that 
Hebei is to increase the annual GDP by about 7%, and 
break through the GDP target of 4 trillion yuan by 2020 
(at the current price). Accordingly, the growth rates of 
GDP with low, medium, and high speeds in Hebei from 
2016 to 2035 are formulated (Table 5). The per capita 
GDP (AvGDP) required by the STIRPAT model is 
calculated by GDP/ Population.

Energy Consumption

According to Hebei’s 13th Five-Year Plan Greenhouse 
Gas Emission Control Project, the province is going 

to build a low-carbon energy system, and strengthen  
the control of energy consumption and intensity. Hebei 
ensured that, by 2020, the energy consumption of the 
province would be controlled within 327.85 million  
tons of standard coal and the energy consumption  
of per 10,000 yuan of GDP would decrease by 17% 
compared with 2015. Assuming that the energy 
consumption of Hebei in 2020 would be 327.85 million 
tons of standard coal, the corresponding average annual 
growth rate of energy consumption from 2016 to 2020 
is calculated at 2.2%. Accordingly, the growth rates  
of energy consumption with low, medium, and high 
speeds in Hebei during 2016-2035 are formulated  
(Table 5). The energy intensity (ENE) required by the 
STIRPAT model is calculated by Energy consumption/
GDP.

Coal Consumption Proportion

According to Hebei’s 13th Five-Year Plan Greenhouse 
Gas Emission Control Project, the province should 
greatly reduce coal consumption through suppressing 
industrial coal combustion and governing decentralized 
coal in order to ensure that the total amount of coal 
consumption in 2017 would decrease by 40 million tons 
compared to 2012. Thus the average annual decrease 
rate of coal consumption in Hebei from 2012 to 2017 is 
3% (Table 5). 

Fig. 4. Error evolution diagram of GA optimization process.

Table 5. Scenario settings.

Scenarios Year Growth rate (%)

Population

A
2016-2028 0.280

2029-2030 -0.200

B
2016-2025 0.364

2026-2030 -0.200

C
2016-2022 0.521

2023-2030 -0.200

Year Low Medium High

GDP

2016-2020 6.5 7.0 7.5

2021-2025 6.0 6.5 7.0

2026-2030 5.5 6.0 6.5

2031-2035 4.5 5.0 5.5

Total energy 
consumption 2016-2035 2.0 2.5 3.0

Coal 
consumption 
proportion

2016-2035 -0.5 -1.0 -1.5

Urbanization 
rate

2016-2020 2.5 3.0 3.5

2021-2035 1.0 1.5 2.0

Proportion of 
service industry 2016-2035 2.0 2.5 3.0
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Urbanization Rate

According to the Outline of Collaborative 
Development of Beijing, Tianjin and Hebei Province, 
the urbanization rate in Hebei will reach about 60% for 
permanent residents. Thus the average annual growth 
rate of urbanization rate in Hebei from 2016 to 2020 is 
3.17%. According to this, the urbanization rates with 
low, medium, high speeds in Hebei province from 2016 
to 2035 are formulated (Table 5).

Proportion of Service Industry

According to Hebei’s 13th Five-Year Plan Greenhouse 
Gas Emission Control Project, by 2020 the added value 
of services should account for about 45% of GDP. 
Thus the average annual growth rate of proportion of 
service industry in Hebei from 2016 to 2020 is 2.28%. 
According to this, the proportions of service industry 
from 2016 to 2035 of low, medium, abd high speeds are 
formulated (Table 5).

Final Scenarios

As the population has a significant impact on carbon 
emissions and differs from other variables, it was not 
explicitly put forward mandatory requirements in any 
published government reports, therefore this paper 
takes population as the parental scene, and uses GDP, 
energy consumption, coal consumption proportion, 
urbanization rate and the proportion of service industry 
as sub-scenarios. The final scenario settings are shown 
in Table 6.

Results and Discussion

STRPAT Model

The forecast results of carbon emissions from 2016 
to 2035 in Hebei by STIRPAT model are shown in  

Fig. 5. As shown in the figure, the results of 9 
scenarios present three different trends affected by the  
sub-scenes (GDP, energy consumption, coal  
consumption proportion, urbanization rate and the 
proportion of service industry). Among them, carbon 
emissions of scenarios A1, B1, C1 are the highest, 
followed by A2, B2, C2, and finally A3, B3, C3. Each 
trend is influenced by the parental scenario (population), 
which makes the carbon emission arrangement appear 
as A>B>C. However, in the initial stage, the faster 
the population growths, the faster carbon emission 
increases, and as a result the carbon emissions are 
C>B>A before 2022, and then there is a shift during 
2022-2028. 

The three scenarios of A1, B1 and C1 achieve 
carbon emission peaks in 2030, of which the peak years 
are not affected by different population scenarios, and 
their carbon emission peaks are 1,007.2901 million 
tons, 992.0801 million tons and 977.2396 million tons, 
respectively. In scenario A2, the peak year is 2028, 
and the carbon emission peak is 868.7079 million tons; 
in scenario B2, the peak year of carbon emissions  
is 2025, with corresponding carbon emissions of 
874.2155 million tons; and as for scenario C2, the 
carbon emission peak is 875.9241 million tons in 2022. 
The peak years of carbon emission in scenarios A3  
and B3 are both 2020, with corresponding carbon 
emissions at 784.1635 million tons and 791.3301 million 
tons, respectively; and in scenario C3 the carbon 
emission peak is 810.7182 million tons in 2022.

It can be drawn from Fig. 5 that after reaching 
the carbon emissions peak, the decreases of carbon 
emissions in low sub-scenes (A1, B1, C1) are very 
slow, of which the trends are almost horizontal; carbon 
emissions of medium sub-scenes (A2, B2, C2) decrease 
relatively faster; and the descents of carbon emission of 
high sub-scenes (A3, B3, C3) are the fastest. Therefore, 
the earlier the carbon emission peak is achieved, 
the more conducive it is to the realization of carbon 
emission reduction.

Table 6. Final scenarios setting.

Population GDP Energy con-
sumption

Coal consump-
tion proportion

Urbanization 
rate

Proportion of 
service industry Sub-scenarios

A

Gl El COl Ul Sl A1

Gm Em COm Um Sm A2

Gh Eh COh Uh Sh A3

B

Gl El COl Ul Sl B1

Gm Em COm Um Sm B2

Gh Eh COh Uh Sh B3

C

Gl El COl Ul Sl C1

Gm Em COm Um Sm C2

Gh Eh COh Uh Sh C3
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GA-BP Model

The forecast results of carbon emissions from 2016 
to 2035 in Hebei by GA-BP model are shown in Fig. 6. It 
can be seen from Fig. 6 that results are relatively stable. 
The maximum carbon emissions peak is reached in 2022 
under the C1 scenario, which is 702.8114 million tons; 
and the minimum carbon emissions peak is reached in 
2016 under the A3 scenario with corresponding carbon 
emissions of 702.7465 million tons. The disparity is only 
64.9 thousand tons.

The peak years of carbon emissions are as 
follows: Scenarios A1, A2, and A3 are in 2028, with 
corresponding carbon emissions peaks of 702.8088 
million tons, 702.775 million tons and 702.7465 million 
tons, respectively; Scenarios B1, B2, and B3 are in 2025, 
with corresponding peak values of 702.8109 million 
tons, 702.7818 million tons and 702.7518 million tons, 
respectively; and scenarios C1, C2, and C3 are in 2022, 
with corresponding carbon emissions peaks of 702.8114 
million tons, 702.7908 million tons and 702.7663 
million tons, respectively. It is not difficult to find that 

the peak years of the predicted carbon emissions are in 
line with the peak years of population in all scenarios, 
which shows that the population has a significant 
impact on carbon emissions in this model. In addition, 
on the condition of same sub-scenarios (GDP, energy 
intensity, coal consumption proportion, urbanization 
rate, proportions of service industry), the higher the 
parental scenario (population) is, the greater the carbon 
emissions will be, namely C>B>A.

Comparing Results between STIRPAT 
and GA-BP Models

(1) Similarities
From the above analysis, it can be seen that the 

years of carbon emission peaks are all in 2030 or 
before 2030; therefore it is not difficult for Hebei to 
achieve the peak target of carbon emissions in 2030. 
And the results of the two models are significantly 
affected by demographic factors, especially the 
GA-BP model, of which the peak years of carbon 

Fig. 5. Carbon emission trend curve of Hebei Province from 2016 to 2035 (STIRPAT model).

Fig. 6. Carbon emissions trend curve of Hebei Province from 2016 to 2035 (GA-BP model).
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emission are consistent with the peak years of 
population. In addition, affected by sub-scenarios, 
the carbon emission peaks would reach later in 
lower sub scenarios.

(2) Differences
The values of carbon emission peak predicted  

by the STIRPAT model vary from 784.1635 million 
tons to 1,007.2901 million tons, with corresponding 
peak years from 2022 to 2030. And the results present 
obvious classification phenomenon affected by sub-
scenarios. Influenced by a demographic factor, there  
is a shift of the rankings of carbon emission during 
2022-2028. 

The results of the GA-BP model are more stable,  
and the values of carbon emission peaks vary from 
702.7465 million tons to 702.8144 million tons. The 
carbon emission curves are more concentrated and 
there’s no obvious classification phenomenon that can 
be found in the STIRPAT model. Besides, the predicted 
peak years are only three – 2022, 2025 and 2028 – in 
line with the population peak years. 

The comparison between the predicted data and raw 
data of carbon emissions from 1990 to 2015 (Fig. 3) 
shows that the GA-BP model has a better fitting effect, 
with higher accuracy of carbon emission prediction. 
However, the GA-BP model is greatly affected by 
demographic factor, which may reduce the reliability 
of the peak years predicted by the model. Therefore, 
the STIRPAT model should be more valuable in the 
predicted peak years of carbon emissions.

Conclusions 

Based on the analysis of the status quo of economic 
and social development in Hebei Province, this paper 
uses population, GDP, energy consumption, coal 
consumption proportion, urbanization rate and the 
proportion of service industry in Hebei as the analysis 
variables, and applies the two models of STIRPAT and 
GA-BP to analyze the data of the province during 1990-
2015. The carbon emission peaks of Hebei from 2016 to 
2035 under nine scenarios are predicted.

Firstly, the studied driving factors of carbon 
emissions in Hebei are population, GDP, energy 
consumption, coal consumption proportion, urbanization 
rate and service industry proportion. Ridge regression 
analysis shows that population and the proportion of coal 
consumption are the two most important factors, and the 
proportion of service industry has the least impact on 
carbon emissions. Secondly, this paper constructs nine 
scenarios, taking the population as the parental scene, 
and the remaining factors as sub-scenarios. Thus, nine 
scenarios are obtained: A1, A2, A3; B1, B2, B3; C1, 
C2, C3. Thirdly, this paper uses the STIRPAT model 
to predict the carbon emissions of Hebei from 1990 to 
2015 with population, per capita GDP, energy intensity, 
coal consumption proportion, urbanization rate and 
the proportion of service industry as independent 

variables. By comparing with the raw data, we found 
that the STIRPAT model has a good prediction effect. 
Influenced by the scenarios, the predicted results of 
carbon emissions vary greatly, but the peak years of 
carbon emissions in Hebei are all in or before 2030. 
Fourthly, taking population, GDP, energy intensity, coal 
consumption proportion, urbanization rate and service 
industry proportion as independent variables, the GA-
BP model has a fine fitting effect and it’s more stable 
than the STIRPAT model. The peak years of carbon 
emissions in nine scenarios are consistent with the peak 
years of population; therefore, the model’s reliability is 
reduced. Nevertheless the carbon emission predicted by 
the GA-BP model is more stable and accurate than the 
STIRPAT model. 

It is hence concluded that the earlier the carbon 
emissions peak is achieved, the more conducive to the 
realization of carbon emission reduction. 1) Population 
is an important factor that influences carbon emission. 
With the implementation of the two children policy, 
population could keep increasing for a short term, so 
for the purposes of controlling carbon emissions, the 
increase of population should be suppressed properly. 
2) Coal consumption proportion is another key factor. 
Attention should be paid to alternative coal work and 
speed up the pace of energy transformation, which 
also contributes to the governance of smog. We need  
to encourage investment in new high-technology 
industries such as clean energy and environmental 
technology, as well as use more clean energy and less 
coal and oil. 3) While promoting the urbanization 
process, we should also pay attention to carbon emission 
reduction. We should intensify efforts to prevent and 
control environmental pollution, do a good job in 
environmental protection in key cities, and strengthen 
environmental protection and construction in small 
towns. 
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